Received 14 December 2005

Accepted 16 December 2005

Online 23 December 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Zhi-Wei Xu, Yun-Long Fu\* and Jia-Lin Ren

School of Chemistry and Material Science, Shanxi Normal University, Linfen,Shanxi, People's Republic of China

Correspondence e-mail: yunlongfu@dns.sxtu.edu.cn

#### **Key indicators**

Single-crystal X-ray study T = 273 K Mean  $\sigma$ (C–C) = 0.004 Å R factor = 0.033 wR factor = 0.085 Data-to-parameter ratio = 11.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# Piperazinium(2+) hexaaquairon(II) bis(sulfate)

In the crystal structure of the title compound,  $(C_4H_{12}N_2)$ -[Fe(H<sub>2</sub>O)<sub>6</sub>](SO<sub>4</sub>)<sub>2</sub>, hydrogen bonds link the piperazinium cation, the hexaaquairon(II) cation and the sulfate anions into a three-dimensional network. The [Fe(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> and piperazinium cations each lie on a centre of symmetry.

# Comment

This report describes a study of the reactions of iron(II) sulfate and piperazine under solvothermal conditions. We have previously described a 4,4-bipyridine salt of hexa-aquairon(II) sulfate, accompanied by two uncoordinated water molecules (Fu *et al.*, 2005). A similar reaction with N,N-dimethylformamide (DMF) as solvent and piperazine as diamine yielded the title compound, (I) (Fig. 1), although DMF was not incorporated into the crystal structure. The compound can be regarded as a double salt of piperazinium sulfate and hexaaquairon(II) sulfate.



The  $[Fe(H_2O)_6]^{2+}$  and  $C_4H_{12}N_2^{2+}$  cations and the sulfate anions interact through hydrogen bonds (Table 2), forming a three-dimensional network. The organic cation and the Fe atom each lie on an inversion centre. There are only four examples in the literature of a hexaaquametal sulfate salt having an organic piperazine cation. The structures of piperazinium hexaaquacobalt(II) bis(sulfate) (Pan *et al.*, 2003) and piperazinium hexaaquanickel(II) bis(sulfate) (Meng *et al.*, 2004) are similar to that of the title compound, but hemi(piperazinium) hexaaquaaluminium(III) bis(sulfate) tetrahydrate (Bataille, 2003) and piperazinium hexaaquazinc(II) bis(sulfate) (Rekik *et al.*, 2005) have additional hydrogen-bond interactions with uncoordinated water molecules.

### Experimental

© 2006 International Union of Crystallography Printed in Great Britain – all rights reserved Iron(II) sulfate heptahydrate (0.278 g, 1 mmol) was dissolved in DMF (7 ml) with constant stirring. A drop of concentrated sulfuric

# metal-organic papers



#### Figure 1

A plot of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (a) -x, -y + 1, -z + 1; (b) -x, -y + 1, -z + 2.]

acid (0.06 ml, 1 mmol) was added, followed by piperazine (0.086 g, 1 mmol). The final mixture was placed in a 15 ml Teflon-lined Parr bomb, which was heated at 383 K for 2 d. The bomb was cooled and opened to reveal pale-green block-shaped crystals in about 40% yield with respect to Fe.

#### Crystal data

| $(C_4H_{12}N_2)[Fe(H_2O)_6](SO_4)_2$ | $D_x = 1.809 \text{ Mg m}^{-3}$           |
|--------------------------------------|-------------------------------------------|
| $M_r = 444.22$                       | Mo $K\alpha$ radiation                    |
| Monoclinic, $P2_1/n$                 | Cell parameters from 25                   |
| a = 7.8345 (6) Å                     | reflections                               |
| b = 9.3814 (8) Å                     | $\theta = 2.8-27.0^{\circ}$               |
| c = 11.0965 (9)  Å                   | $\mu = 1.25 \text{ mm}^{-1}$              |
| $\beta = 91.2840 \ (10)^{\circ}$     | T = 273 (2) K                             |
| $V = 815.37 (11) \text{ Å}^3$        | Block, pale green                         |
| Z = 2                                | $0.18 \times 0.15 \times 0.14 \text{ mm}$ |
| Data collection                      |                                           |
|                                      | 17(2:1 1 ( 0 )                            |

Bruker SMART CCD area-detector diffractometer  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  $T_{\min} = 0.806, T_{\max} = 0.844$ 4636 measured reflections

# Refinement

| Refinement on $F^2$             |
|---------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.033$ |
| $wR(F^2) = 0.085$               |
| S = 1.10                        |
| 1763 reflections                |
| 155 parameters                  |
| H atoms treated by a mixture of |
| independent and constrained     |
| refinement                      |

1763 independent reflections 1679 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.021$   $\theta_{max} = 27.0^{\circ}$   $h = -8 \rightarrow 10$   $k = -10 \rightarrow 11$  $l = -10 \rightarrow 14$ 

$$\begin{split} &w = 1/[\sigma^2(F_o{}^2) + (0.0439P)^2 \\ &+ 0.5012P] \\ &where \ P = (F_o{}^2 + 2F_c{}^2)/3 \\ (\Delta/\sigma)_{max} < 0.001 \\ \Delta\rho_{max} = 0.63 \ e \ Å{}^{-3} \\ \Delta\rho_{min} = -0.36 \ e \ Å{}^{-3} \\ &\text{Extinction correction: $SHELXL97$} \\ &\text{Extinction coefficient: 0.026 (2)} \end{split}$$

# Table 1

Selected geometric parameters (Å, °).

| Fe1-O2                  | 2.0894 (18) | Fe1-O3                  | 2.1273 (18) |
|-------------------------|-------------|-------------------------|-------------|
| Fe1-O1                  | 2.1253 (16) |                         |             |
| O2-Fe1-O1               | 87.49 (8)   | O2-Fe1-O3               | 90.95 (8)   |
| O2 <sup>i</sup> -Fe1-O1 | 92.51 (8)   | O1-Fe1-O3               | 88.04 (7)   |
| O2-Fe1-O3 <sup>i</sup>  | 89.05 (8)   | O1 <sup>i</sup> -Fe1-O3 | 91.96 (7)   |

Symmetry code: (i) -x, -y + 1, -z + 1.

| Table 2                |     |     |  |
|------------------------|-----|-----|--|
| Hydrogen-bond geometry | (Å, | °). |  |

| $D - H \cdot \cdot \cdot A$ | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------|----------|-------------------------|--------------|---------------------------|
| N1-H12···O7 <sup>ii</sup>   | 0.88 (5) | 2.43 (4)                | 3.080 (3)    | 131 (3)                   |
| $N1-H12\cdots O6^{ii}$      | 0.88 (5) | 2.10 (5)                | 2.953 (3)    | 165 (3)                   |
| O3−H6···O6 <sup>iii</sup>   | 0.86 (4) | 1.91 (4)                | 2.757 (2)    | 167 (3)                   |
| N1-H11···O7                 | 0.89 (4) | 2.54 (4)                | 3.065 (3)    | 119 (3)                   |
| O2−H4···O5                  | 0.73 (3) | 2.04 (3)                | 2.768 (3)    | 174 (3)                   |
| O1-H1···O5 <sup>iii</sup>   | 0.79 (4) | 1.94 (4)                | 2.733 (2)    | 175 (3)                   |
| $O1-H2\cdots O6^{iv}$       | 0.87 (4) | 1.94 (4)                | 2.783 (3)    | 164 (3)                   |
| $O3-H5\cdots O7^{v}$        | 0.80 (3) | 1.90 (4)                | 2.695 (3)    | 173 (3)                   |
| $O2-H3\cdots O4^{vi}$       | 0.80 (4) | 1.91 (4)                | 2.698 (3)    | 165 (3)                   |

Symmetry codes: (ii) -x + 1, -y + 1, -z + 2; (iii) -x + 1, -y + 1, -z + 1; (iv)  $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$ ; (v)  $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$ ; (vi)  $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$ .

H atoms were located in difference Fourier maps and were refined with distance restraints of O-H = N-H = 0.85 (1) Å and C-H = 0.95 (1) Å; their displacement parameters were refined freely.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT*; data reduction: *SAINT* (Bruker, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELX97*.

We thank the Natural Scientific Foundation Committee of Shanxi Province (No.20041031).

### References

- Bataille, T. (2003). Acta Cryst. C59, m459-m461.
- Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1639– m1640.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Meng, H., Xing, Y., Fu Y.-L., Shi, Z. & Pang W.-Q. (2004). Chem. Res. Chin. Univ. 20, 1–5.
- Pan, J.-X, Yang, G.-Y, & Sun, Y.-Q (2003). Acta Cryst. E59, m286-m288.
- Rekik, W., Naili, H., Mhiri, T. & Bataille, T. (2005). Acta Cryst. E61, m629m631.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.